
CPS311 Lecture: Procedures and Parameters Last revised August 31, 2021

Objectives:

1. To introduce general issues that any architecture must address in terms of calling/
returning from procedures, passing parameters (including the distinction between
call by value and call by reference), getting returnvalues, and preserving registers.

2. To introduce the notion of a procedure's stack frame
3. To discuss MIPS mechanisms for call/return, passing parameters, getting return

values, and preserving registers.

Materials:

1. Projectables
2. MIPS register conventions handout
3. Procedure Example program handout
4. Ability to run example program - quadratic solver (in Procedures folder on MIPS)

I. Introduction

A. Any program of significant size is typically implemented as a collection of
smaller units called by names like PROCEDURE or FUNCTION or
METHOD. The idea, in any case, is to define a body of code that can be used
from various other places in the program.

(Note: in keeping with accepted practice, we will use the term procedure for
such a body of code - even though different HLL's prefer different terms - e.g.
the C language documentation typically uses the term function, while OO
languages typically use the term method.)

B. Consider the following fragment from a block of C++ code:

1

class Person  
 {  
 private:  
 ...  
 int age;  
 ...  
 public:  
 ...  
 int getAge()  
 {  
 return age;  
 }  
};  
 
int main()  
{  
 ...  
 Person p;  
 ...  
 cout << p.getAge();  
 ...  
}  
 
PROJECT

In particular, consider the machine language translation of the definition of the
getAge() method, and its subsequent call later in the program. In order for this
call to be successful, a number of issues must be addressed:

1. Saving a return point:

The code in the main program will include a line that jumps to the
code for getAge(), followed immediately by code to output the" resulting
integer value to cout - e.g.

code to invoke getAge();  
code to output resulting integer value to cout  

PROJECT

2

This code must somehow let the code for getAge() know where execution is
to resume once getAge() has done its job - i.e. at the codeC needed to
output the value

a) If a procedure were only used once in a program, this could be
handled by having the _procedure_ "know" where it is to return.

b) But since many procedures are used multiple times in a program, the
caller must assume the burden of telling the procedure where to
return to when it is done.

2. Return value:

The value looked up by getAge() must somehow be made available to
the output code in the main program.

3. Passing parameters:

Even though the call to getAge() does not have any explicit parameters, it
does have an implied parameter

ASK

The "this" parameter that points to the specific Person object whose age is
being requested.

C. All architectures provide support for these tasks, and at least one other that we
haven't considered yet. This support may take the form of special provisions in
the hardware, or may take the form of commonly adhered-to software
conventions - or often some combination of the two.

While we will look at the MIPS mechanisms, our goal is not simply to
understand how MIPS does these things, but also to understand the task itself.
Where appropriate, I will also mention alternative approaches that other
architectures use.

3

II. Stack Frames

A. Before we discuss these issues in detail, we need to consider a concept that
virtually all ISAs make some provision for - the stack frame for a procedure.

B. A common software convention is to set aside a special region in memory
called the STACK.

1. As you recall, a stack is a data structure that grows and shrinks like a stack
of cafeteria trays. Stacks obey a LIFO (last-in first-out) discipline.

2. Typically, when a procedure is called a special data structure called its stack
frame (or call frame) is allocated space on the stack. When it returns, this
space is released.

Note that procedure calls and returns obey a LIFO discipline - e.g.
if A calls B and B calls C and C calls D, then D returns first, then C, then B.

3. An important characteristic of the stack in most ISA's is that it GROWS
TOWARD LOW ADDRESSES.

a) That is, when the stack is initially created, it starts at the high end of
memory.

b) As it grows, it grows toward low memory.

c) The reason for this is that there are two ways that the memory allocated
to a program can increase as the program is running:

(1) Frames can be pushed on the stack - if procedure A calls B and B calls C,
then frames for A, B, and C will be on the stack while C is executing.

(2)Memory can be allocated by new() or its equivalent in another
programming language. The region from which this memory is
allocated is called the HEAP (nothing to do with the heap data
structure - the same term but different meaning)

4

(3)To avoid these two mechanisms coming into conflict, each starts from
one end of memory and grows toward the middle:

Low memory addresses  

| PROGRAM CODE AND |  
| STATIC DATA |  

| HEAP (used for | | Direction of growth  
| new() requests) | v  
////////////////////  
//////////////////// As-yet unallocated memory  
////////////////////  
| STACK | ^  
| | | Direction of growth  

High memory addresses  
 
PROJECT

4. Most ISA's designate one or two registers to hold the address of the "top" of
the stack.

a) A STACK POINTER register to point to the current top of the stack.

b) A FRAME POINTER register (not always used) to point to the base of
the current stack frame - i.e. the top procedure on the stack. (This allows
other items to be pushed on the stack after the frame is pushed, which
will change the stack pointer but not the frame pointer.

c) This leads to the following convention when a procedure is executing.

5

(1)MIPS (and a number of other ISAs) conventions

Low memory addresses  

/////////////////////  
/////////////////////  
/////////////////////  
| Stack frame for | $sp (and $fp if used)  
| current procedure |  
| (saved registers, |  
| local variables, |  
| etc.) |  
| Stack frame for |  
| caller |  
| ... |  

High memory addresses

PROJECT

(2)But for some ISAs the convention, if they use a frame pointer, is to
have it point to the OTHER (high memory address) end of the frame

(3)You will also find that sometimes diagrams like this are drawn the
other way - with high memory addresses on the top of the page
instead of the bottom! So be sure to read the labels carefully when
you look at a drawing!

We will always use the convention of low-end of memory on top.

d) The MIPS convention is to use register $29 as the stack pointer
(commonly referred to by the special name $sp) and (sometimes) to use
register $30 as the frame pointer (commonly referred to by the special
name $fp). (But often just $sp is used for both purposes)

(1)Note that, in the MIPS ISA, these are software conventions. Actually,
any general registers could be used for these purposes, along as all
code agreed on the conventions. (Since we will be making use of the

6

operating system and system libraries in lab, we will need to adhere
to these conventions!)

(2) In contrast, some ISA's use special registers for the stack pointer and/
or frame pointer, and these conventions are "wired in" to the
hardware.

C. The stack frame for a procedure may store some or all of the following:

1. The return address in the caller to which the procedure is to return.

2. The procedure's parameters.

3. The values of other registers that the procedure uses, that need to be
preserved if they are used by its ancestor(s) or by other procedures it calls..

4. Local variables:

a) For efficiency reasons, local variables of a procedure are kept inv
registers where possible. However, there are a number of cases where a
local variable will be allocated space in the procedure's stack frame
instead:

(1)The local is too big to fit in a register (e.g. it's an object or an array.)

(2)The number of locals exceeds the number of available registers.

(3)The local will be passed as a by-reference parameter to some other
procedure (meaning it must have a memory address to pass.)

b) When a local variable "lives" in the procedure's stack frame, its address
can always calculated as some offset relative to the base address of the
stack frame. Whether this offset is negative or positive depends on
which end of the frame is considered the base:

7

(1) If the low memory (stack pointer) end of the frame is considered the
base (as is the case for MIPS), and given that stack growth is toward
low memory, this offset will be positive.

(2)But if the other end of the frame is considered the base, the offset will
be negative!

(3)For our examples, we will stick with the MIPS base = low memory
end of the frame convention. And we will consider $sp to be the
base of the frame, and will not use $fp. (When working with a
different ISA, these things may be handled differently.)

Example: Suppose we have a procedure which declares a local
variable foo that is allocated space in its stack frame. Suppose,
further, that some elements of the frame occupy a total of 6 bytes
after it. Then while the procedure is executing the frame may look
like this

 Low memory addresses  

| ... 16 bytes ... | $sp  
| foo |  
| |  

High memory addresses  

PROJECT

The memory address of foo will be $sp+16, or - in mips notation -
16($sp)

8

III.More About Memory Allocation

A. At this point, it may be worthwhile to pull together various comments we've
made about how MIPS systems (and, indeed, most systems) handle the
allocation of physical memory for various purposes.

B. Recall that most systems divide memory into a user portion ("user space") and
a system portion ("kernel space"). We are only concerned with user space
here. How kernel space is divided up is system-dependent.

C. Typically, user space is divided into four regions - often with large unallocated
spaces between them. The following is a typical structure:

 --------------------------- Lowest address in user space  
| |  
| CODE |  
| |  

| |  
| GLOBAL DATA |  
| |  

| |  
| HEAP | (growth)  
| | v  

| /////////////////////// |  
| /// Unused /// |  
| /////////////////////// |  

| | ^  
| STACK | (growth)  
| |  
--------------------------- Highest address in user space  

PROJECT

9

1. The code region contains the machine-language version of the program.
This is typically loaded at program startup, and is not changed during
program execution. (Often, this region of memory is mapped "read-only"
during program execution.

2. The global data region contains variables and arrays that exist throughout
the execution of the program. This includes:

a) Global variables declared outside of any function or class in a language
like C/C++.

b) Static variables in the various classes for languages like C++ or Java.

 Note that, while the values of these variables can certainly change
during program execution, the fact that a particular variable is found at a
particular address does not change during program execution.

3. The heap region contains variables that are created dynamically while the
program runs - e.g. objects created by new in languages like C++, or by
routines like malloc() in C.

a) Because new variables can be created in this region in any time, it can
grow during program execution. This is managed by the system
maintaining a "fence" value that represents the largest valid address in
the heap - any address <= this is part of the heap; > this is unused. By
increasing the value of the fence, the heap can be expanded.

b) Of course, variables that are created in the heap can also be destroyed -
e.g. by delete in C++ or free() in C. Typically, hat happens in this case is
the system uses the memory that they formerly occupied to satisfy a new
request - i.e. the heap usually does not shrink during program execution,
but space can be recycled.

4. The stack is used for allocating temporary memory for procedures.
Whenever a procedure is called, a certain amount of memory (called its
"stack frame" or "activation record" is allocated on the stack). When the

10

procedure terminates, this memory is released for reallocation. Since
procedures obey a "last in first out" discipline for calls and returns, this
space grows and shrinks constantly during program execution.

D. Example: consider the following class

class SomeClass  
{  
 int someInstanceVariable;  
 static int someStaticVariable;  
 
 void someMethod()  
 {  
 int someLocalVariable;  
 ...  
 }  
};  
 
main()  
{  
 SomeClass c = new SomeClass();  
 c.someMethod()  
 ...  
}

PROJECT

When someMethod is being executed, the various variables are allocated space
as follows:

11

--------------------------- Lowest address in user space  
| |  
| CODE |  
| code for SomeClass and |  
| main() |  

| |  
| GLOBAL DATA |  
| someStaticVariable |  
| |  

| |  
| HEAP |  
| c.someInstanceVariable | (growth)  
| | v  

| /////////////////////// |  
| /// Unused /// |  
| /////////////////////// |  

| |  
| STACK |  
| someLocalVariable | ^  
| c | (growth)  
| |  
--------------------------- Highest address in user space  

PROJECT

12

IV.Mechanisms for Supporting Procedure Calls

A. Basic Procedure Calling Mechanisms

1. All ISAs support some sort of procedure call instruction, which does two
things:

a) Save the return address - the address of the next instruction after it - in
some ISA-defined location. Often, this is on the stack (i.e. the return
address is pushed on the stack)

b) Begin executing the first instruction of the procedure.

2. In the MIPS architecture, the basic instruction for invoking a procedure is
the JUMP AND LINK (jal) instruction.

a) It looks very much like the ordinary jump instruction; in fact, it uses the
same J-Format:

of bits 6 26  
 
field name op target address  
contents 3 address of first instruction of procedure

PROJECT

b) The fundamental distinction between this instruction and the ordinary
jump instruction (j) is that the CPU saves the address of the next
instruction after it in register 31.

(1)That is, in the getAge() example we used earlier, the following code
will occur in main:

jal start of getAge()  
code to output resulting integer value to cout  
 
PROJECT

13

(2)When getAge() is being executed register 31 will contain the address
of the code to output the integer value to cout. To return to this code
upon completion, getAge() will end with the following instruction:

jr $31

PROJECT

which - as you recall - does a jump to the instruction whose address
is contained in register 31. (This is, in fact, the chief use of the jr
instruction.)

(3) (MIPS also has an R-Format variant jalr which stands to jal as jjr
stands to j - which can be used when the target address is too far
away to be specified with just the 26 bits reserved for this in jalr)

c) Note that the use of register 31 for this purpose is a HARDWARE
provision - the jal instruction always results in the address of the next
instruction being placed in register 31. (The designers of MIPS made
this choice to allow the maximum possible number of bits in the
instruction format to be available for specifying the target address. If
they had decided to let any register be used, not just register 31, they
would have needed to set aside 5 bits to specify a register number.)

d) What MIPS does in this regard is actually a bit unusual - most ISAs save
the return address on the stack. MIPS uses the convention it does for
hardware simplicity, and relies on the called procedure to actually push
the return address on the stack if this needs to be done (which isn't
always the case).

3. Most architectures specify that procedures that return a value to the caller
place the value in a specific register. In the case of MIPS, the convention is
to use register 2 for this purpose - if the return value is 32 bits or less - and
to use registers 2 and 3 together for a 64 bit return value in a 32-bit ISA or,
in some cases, for a second return value.

14

a) Thus, in the earlier example, getAge() will contain code like this:

put age field of the person object into $2  
jr $31  

PROJECT

b) And the code in main will look like this

jal start of code for getAge()  
output the value in $2 to cout  

PROJECT code with return value handling

c) Note that this is a SOFTWARE convention. Any register(s) could be
used to return a value from procedure - but the common MIPS
convention is to use $2 (and $3 if needed) for this purpose.

(Each ISA typically uses a convention that is appropriate for the
underlying register set).

4. Parameter-passing actually involves two basic issues: WHAT is passed, nd
WHERE it is passed.

a) In terms of WHAT, there are two basic answers that all ISAs support
PASS BY VALUE and PASS BY REFERENCE.

(1) In pass by value, what is passed is the ACTUAL VALUE of the
argument.

(2) In pass by reference, what is passed is the ADDRESS IN MEMORY
where the argument resides.

15

Example: Given the following declaration:

void foo(int a, int & b)  
 ...  

And call

int x;  
foo(3, x);  

PROJECT

And assuming that x is stored in memory location 1000, what is
passed (on any ISA) is 3 and 1000, since a is passed by value, and
b is passed by reference results in the following MIPS code:

addi $4, $0, 3  
addi $5, $0, 0x3e8 (= 1000 decimal)  
- or more likely  
la $5, x  
 
PROJECT

(3)Each serves different purposes.

(a) Call by value can be used with variables, constants, and computed
values. Call by reference can only be used with parameters
having a memory address - most easily variables (though
temporary copies can be made in memory for other types.

\
(b)Call by reference allows the procedure to change the value passed

to it by the caller. This allows the called procedure to return
another value to the caller, but also means the called procedure
can "damage" something belonging to the caller.

(c) Call by value makes accessing the actual value of the parameter
easier. Call by reference requires an extra trip to memory.

16

(d) In C, all parameters except arrays are passed by value - the
address of operator (&) and dereference operator (*) must be used
to get the effect of call by reference. But arrays parameters are
passed by reference.

(e) C++ uses call by value non-array paraemters unless the reference
specifier (&) is specified in the procedure declaration. Like C, it
uses call by reference for arrays,

(f) Java uses call by reference for the 8 primitive types, and call by
reference for object and array types.'

b) In terms of WHERE parameters are passed, ISAs vary quite widely.

(1)Some ISAs pass parameters using the stack - i.e. the caller pushes the
value or address of the parameters on the stack before calling the
procedure.'

(2) In the case of MIPS, a common convention is to use registers
beginning with $4 for passing parameters. Some MIPS-based
systems reserve four registers for this purpose (4 .. 7); others reserve
eight (4..11). (These registers can be referred to by the special names
a0, a1 etc.) We will discuss below what happens if some procedure
requires more parameters than this - but this is relatively rare -
procedures typically have relatively few parameters.)

(a) Thus, in the getAge() example, the code in main will look like this:

put p (i.e. address of Person object p refers to to) into $4  
jal getAge()  
output the value in $2 to cout  

PROJECT

17

(b)The code in getAge() will look like this

lw $2, offset of age in Person($4)  
jr $31

PROJECT

(c) As was true with the return address and return value, this is a
SOFTWARE CONVENTION. Any registers could have been
used for passing parameters - or some other strategy could have
been used, like pushing them on the stack. But since MIPS
system software uses $4, $5, $6 and $7 (and sometimes $8, $9,
$10, and $11) for this purpose, the convention is to use these for
user software as well (which often calls library routines anyway)

(3)What does MIPS do if a procedure needs more parameters than there
are registers reserved for this purpose (4 or 8)? (We've already noted
that this will be rare.)

In brief, the answer is that the extra parameters are pushed
on the stack by the caller.

(4)One more MIPS example: Given the following declaration:

void foo(int a, int & b)  
...  

And call

int x;  
foo(3*4 - 2, x);  

PROJECT

And assuming that x is stored in memory location 1000, then the
what would the MIPS parameter registers be?

ASK

18

$4: 10 <- value of a - passed by value  
$5: 1000 <- address of b - passed by reference

B. The Issue of Register Preservation

1. One issue we haven't faced in our examples yet is that of PRESERVING
REGISTER VALUES ACROSS CALLS. But this is important in many
cases.

2. Procedures are of two general types:

a) "Leaf" procedures do not, themselves, call othervprocedures. (In our
example, getAge() is a leaf procedure.)

b) "Non-leaf" procedures do call other procedures. (In our example,
getAge() might need to be a non-leaf procedure if instead of storing the
person's age in the object, we stored the person's date of birth. Then
getAge() would have to COMPUTE the age by calling a method of class
Date to get the current date, and then calling another method of class
Date that gets the difference n years between two Dates.)

3. A non-leaf procedure has to deal with the saving of information in registers
that might be changed when calling another procedure.

Example: If we stored the person's date of birth instead of current age, then
getAge() would look something like his - assuming the field in the object
that holds the person's birth date is called dob, and that there is a Date
class with suitable methods:

int getAge()  
{  
 Date today = Date.getToday();  
 return today.yearsSince(dob);  
}  

This could translate into assembly language code like the following:

19

Note: upon entry "this" of Person object is in $4  
and return address is in $31  
 
 jal code for getToday() method of Date  
 put $2 into $4  
 lw $5, dob field offset($4)  
 jal code for yearsSince() method of date  
 
return value from yearsSince() method is already in $2  
  
 jr $31 # Return to original caller  

PROJECT C++ code and AL translation

Unfortunately, though, this won't do what we want it to. Why?

ASK

a) The lw $5 that sets up the second parameter to yearsSince() assumes that
$4 holds the "this" pointer for the method. That was correct upon entry,
but the previous instruction put a different value in $4. Even if this were
not so, the getToday() method code might have changed $4 somehow.

b) The final jr $31 assumes that $31 contains the address to return to in the
caller. But the two intervening jal's will have changed this.

This illustrates the necessity of non-leaf procedures preserving registers
that it needs.

4. In general, there are two approaches one might take to addressing this issue:

a) The "caller save" approach: when a non-leaf procedure calls another
procedure, it must assume that the procedure it callsvmay change any of
the registers. Therefore, the caller must save the values of any registers
it needs before it calls the other procedure, and restore the values after
the called procedure returns.

20

 Example: in the above, the getAge() method needs to make use of
values that were in $4 and $31 when it was called. Therefore, it would
need to save these two values in a safe place before calling getToday().
It would need to restore $4 before loading the dob argument for the
second call, and would need to restore $31 just before it returns to its
caller.

Under this convention, a caller can make NO assumptions about what
values are in the registers when a call to another procedure finishes.
This might be called the "defensive driving" approach to register
preservation.

b) The "callee save" approach: a procedure that alters a value stored in any
register must save the value that was in that register when it is entered,
and restore it just before it returns.

Example: In the above, getAge() would be responsible for saving and
restoring the values in $4, $5, and $31.

 Under this convention, a caller can assume that a called procedure does
not make any visible changes to any registers - except, of course, the
register holding a return value if there is one. This might be called the
"clean up your own mess" approach to register preservation.

c) Note that the choice of approach to take is really a matter of oftware
convention, not hardware design (though some ISA's have included
mechanisms to facilitate one or the other of the two approaches - e.g.
the DEC VAX had a mechanism that allowedva procedure to specify that
certain registers be saved by any CALL instruction that calls it and
restored by the RET v instruction that it uses to return - i.e. the hardware
implements a callee save facility.)

5. Software conventions on MIPS use a hybrid approach - some registers are
designated as callee save registers, while the rest are caller save.

HANDOUT - MIPS conventions

21

a) Callee save - a procedure that modifies any of these registers MUST
save them and restore them:

(1)Registers $16 .. $23 - known by the special names s0 .. s7 (where s
stands for "saved")

(2)Registers $28 .. $$30 - known by the special names $gp, $sp, $fp
($sp and $fp are discussed below).

(3)Register $31 - known by the special name ra (return address - as
already discussed)

(a) A leaf procedure does not need to save its return address, since it
doesn't call other procedures. Thus, the MIPS convention of
putting the return address in a register rather than pushing it on the
stack avoids a stack push in this case.

(b)A non-leaf procedure must always save its return address, since
$31 is used for the procedures it calls.

b) Caller save - a procedure that needs any of these registers after a call to
another procedure must save them before the call and restore them
afterward:

(1)Registers $2 .. $3 - known by the special names v0 .. v1 (where v
stands for "value" - these are used for return values of procedures - of
course, when calling a function, it is often desired to get a return
value in these registers anyway, so saving/restoring them is rarely
necessary unless the value returned by one function is needed after
another function is called.)

(2)Registers $4 .. $7 - known by the special names a0 .. a3 (where a
stands for "argument")

22

(3)Registers $8 .. $15, $24 .. $25 - known by the special names t0 .. t9
(where t stands for "temporary")

c) The remaining registers are special in some way, and are not ordinarily
altered by user-written procedures

(1)Register $0 - known by the special name zero - always contains zero
(hardwired)

(2)Register $1 - known by the special name at (where at stands for
assembler temporary) reserved for use by the assembler when
constructing 32-bit immediate values or addresses that require two
instructions to create

(3)Registers $26 .. $27 - known by the special names k0, k1 (where k
stands for kernel) reserved for use by the kernel of operating system -
may change at any time outside the control of the user program, so
shouldn't be used by user code.

6. One issue we have not yet discussed is the question of WHERE we save
registers.

a) At first glance, it might seem that setting aside a special area in memory
for each procedure would suffice - but this will not always work. Why?

ASK

Recursive procedures

b) The convention used by most ISA's including MIPS - is to make use of
the procedure's stack frame.

(1)To save a register, it can be pushed on the stack.

23

(2)To restore a register, it can be popped from the stack. Note that, due
to the LIFO property of stacks, restoring pops would have to be done
in the reverse order of saving pushes.

(3)On some ISA's - including MIPS - it is more efficient to push a whole
stack frame upon procedure entry, and then store the register values
into the various slots, rather than to push each register individually.
We'll see how this works out in the handout.

C. Go over handout example program

24

